Search results for " zero viscosity limit"

showing 3 items of 3 documents

Zero viscosity limit of the Oseen equations in a channel

2001

Oseen equations in the channel are considered. We give an explicit solution formula in terms of the inverse heat operators and of projection operators. This solution formula is used for the analysis of the behavior of the Oseen equations in the zero viscosity limit. We prove that the solution of Oseen equations converges in W1,2 to the solution of the linearized Euler equations outside the boundary layer and to the solution of the linearized Prandtl equations inside the boundary layer. © 2001 Society for Industrial and Applied Mathematics.

Solution formulaApplied MathematicsPrandtl numberMathematical analysisMathematics::Analysis of PDEsAnalysiAsymptotic expansionEuler equationsComputational Mathematicssymbols.namesakeBoundary layerElliptic operatorBoundary layerAsymptotic expansion; Boundary layer; Oseen equations; Solution formula; Zero viscosity limit; Mathematics (all); Analysis; Applied MathematicssymbolsInitial value problemMathematics (all)Boundary value problemViscosity solutionOseen equationZero viscosity limitAnalysisOseen equationsMathematics
researchProduct

Existence and uniqueness for Prandtl equations and zero viscosity limit of the Navier-Stokes equations

2002

The existence and uniqueness of the mild solution of the boundary layer (BL) equation is proved assuming analyticity of the data with respect to the tangential variable. Moreover we use the well-posedness of the BL equation to perform an asymptotic expansion of the Navier-Stokes equations on a bounded domain.

Bounday layer analysis zero viscosity limit Navier-Stokes equations
researchProduct

Unsteady Separation for High Reynolds Numbers Navier-Stokes Solutions

2010

In this paper we compute the numerical solutions of Navier-Stokes equations in the case of the two dimensional disk impulsively started in a uniform back- ground flow. We shall solve the Navier-Stokes equations (for different Reynolds numbers ranging from 1.5 · 10^3 up to 10^5 ) with a fully spectral numerical scheme. We shall give a description of unsteady separation process in terms of large and small scale interactions acting over the flow. The beginning of these interactions will be linked to the topological change of the streamwise pressure gradient on the disk. Moreover we shall see how these stages of separation are related to the complex singularities of the solution. Infact the ana…

Unsteady Separation Phenomena High Reynolds Flows Navier-Stokes equations Prandtl equations zero viscosity limit Boundary Layer theorySettore MAT/07 - Fisica Matematica
researchProduct